Bifurcations of Periodic Solutions and Chaos in Josephson System with Parametric Excitation

Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic,(2, 3, n-order) subharmonics and(2, 3-order) superharmonics and the heterocilinic and homoclinic bifurcations for chaos under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2015-01, Vol.31 (2), p.335-368
Hauptverfasser: Yuan, Shao-liang, Jing, Zhu-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic,(2, 3, n-order) subharmonics and(2, 3-order) superharmonics and the heterocilinic and homoclinic bifurcations for chaos under periodic perturbation. Using numerical simulation, we check our theoretical analysis and further study the effect of the parameters on dynamics. We find the complex dynamics, including the jumping behaviors, symmetrybreaking, chaos converting to periodic orbits, interior crisis, non-attracting chaotic set, interlocking(reverse)period-doubling bifurcations from periodic orbits, the processes from interlocking period-doubling bifurcations of periodic orbits to chaos after strange non-chaotic motions when the parameter β increases, etc.
ISSN:0168-9673
1618-3932
DOI:10.1007/s10255-014-0447-z