Variable Selection of Generalized Regression Models Based on Maximum Rank Correlation
In this paper, we investigate the variable selection problem of the generalized regression models. To estimate the regression parameter, a procedure combining the rank correlation method and the adaptive lasso technique is developed, which is proved to have oracle properties. A modified IMO (iterati...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2014-01, Vol.30 (3), p.833-844 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the variable selection problem of the generalized regression models. To estimate the regression parameter, a procedure combining the rank correlation method and the adaptive lasso technique is developed, which is proved to have oracle properties. A modified IMO (iterative marginal optimization) algorithm which directly aims to maximize the penalized rank correlation function is proposed. The effects of the estimating procedure are illustrated by simulation studies. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-014-0424-6 |