Dynamics in a Discrete-time Predator-prey System with Allee Effect

In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2013, Vol.29 (1), p.143-164
Hauptverfasser: Chen, Xian-wei, Fu, Xiang-ling, Jing, Zhu-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given.
ISSN:0168-9673
1618-3932
DOI:10.1007/s10255-013-0207-5