Ruin probabilities in the risk process with random income
We extend the classical risk model to the case in which the premium income process, modelled as a Poisson process, is no longer a linear function. We derive an analog of the Beekman convolution formula for the ultimate ruin probability when the inter-claim times are exponentially distributed. A defe...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2008-04, Vol.24 (2), p.195-202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the classical risk model to the case in which the premium income process, modelled as a Poisson process, is no longer a linear function. We derive an analog of the Beekman convolution formula for the ultimate ruin probability when the inter-claim times are exponentially distributed. A defective renewal equation satisfied by the ultimate ruin probability is then given. For the general inter-claim times with zero-truncated geometrically distributed claim sizes, the explicit expression for the ultimate ruin probability is derived. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-005-5141-8 |