Explicit spectral gaps for random covers of Riemann surfaces
We introduce a permutation model for random degree n covers X n of a non-elementary convex-cocompact hyperbolic surface X = Γ ∖ H . Let δ be the Hausdorff dimension of the limit set of Γ . We say that a resonance of X n is new if it is not a resonance of X , and similarly define new eigenvalues of t...
Gespeichert in:
Veröffentlicht in: | Publications mathématiques. Institut des hautes études scientifiques 2020-12, Vol.132 (1), p.137-179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a permutation model for random degree
n
covers
X
n
of a non-elementary convex-cocompact hyperbolic surface
X
=
Γ
∖
H
. Let
δ
be the Hausdorff dimension of the limit set of
Γ
. We say that a resonance of
X
n
is
new
if it is not a resonance of
X
, and similarly define new eigenvalues of the Laplacian.
We prove that for any
ϵ
>
0
and
H
>
0
, with probability tending to 1 as
n
→
∞
, there are no new resonances
s
=
σ
+
i
t
of
X
n
with
σ
∈
[
3
4
δ
+
ϵ
,
δ
]
and
t
∈
[
−
H
,
H
]
. This implies in the case of
δ
>
1
2
that there is an explicit interval where there are no new eigenvalues of the Laplacian on
X
n
. By combining these results with a deterministic ‘high frequency’ resonance-free strip result, we obtain the corollary that there is an
η
=
η
(
X
)
such that with probability
→
1
as
n
→
∞
, there are no new resonances of
X
n
in the region
{
s
:
Re
(
s
)
>
δ
−
η
}
. |
---|---|
ISSN: | 0073-8301 1618-1913 |
DOI: | 10.1007/s10240-020-00118-w |