Harmonic discs of solutions to the complex homogeneous Monge-Ampère equation

We study regularity properties of solutions to the Dirichlet problem for the complex Homogeneous Monge-Ampère equation. We show that for certain boundary data on P 1 the solution Φ to this Dirichlet problem is connected via a Legendre transform to an associated flow in the complex plane called the H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications mathématiques. Institut des hautes études scientifiques 2015-11, Vol.122 (1), p.315-335
Hauptverfasser: Ross, Julius, Nyström, David Witt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study regularity properties of solutions to the Dirichlet problem for the complex Homogeneous Monge-Ampère equation. We show that for certain boundary data on P 1 the solution Φ to this Dirichlet problem is connected via a Legendre transform to an associated flow in the complex plane called the Hele-Shaw flow. Using this we determine precisely the harmonic discs associated to Φ. We then give examples for which these discs are not dense in the product, and also prove that this situation persists after small perturbations of the boundary data.
ISSN:0073-8301
1618-1913
DOI:10.1007/s10240-015-0074-0