Constructing group actions on quasi-trees and applications to mapping class groups

A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT (0) groups with rank 1 elements, mapping class groups and Out ( F n ). As an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications mathématiques. Institut des hautes études scientifiques 2015-11, Vol.122 (1), p.1-64
Hauptverfasser: Bestvina, Mladen, Bromberg, Ken, Fujiwara, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT (0) groups with rank 1 elements, mapping class groups and Out ( F n ). As an application, we show that mapping class groups act on finite products of δ -hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension.
ISSN:0073-8301
1618-1913
DOI:10.1007/s10240-014-0067-4