Constructing group actions on quasi-trees and applications to mapping class groups
A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT (0) groups with rank 1 elements, mapping class groups and Out ( F n ). As an...
Gespeichert in:
Veröffentlicht in: | Publications mathématiques. Institut des hautes études scientifiques 2015-11, Vol.122 (1), p.1-64 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups,
CAT
(0) groups with rank 1 elements, mapping class groups and
Out
(
F
n
). As an application, we show that mapping class groups act on finite products of
δ
-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension. |
---|---|
ISSN: | 0073-8301 1618-1913 |
DOI: | 10.1007/s10240-014-0067-4 |