Small-sample one-sided testing in extreme value regression models

We derive adjusted signed likelihood ratio statistics for a general class of extreme value regression models. The adjustments reduce the error in the standard normal approximation to the distribution of the signed likelihood ratio statistic. We use Monte Carlo simulations to compare the finite-sampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in statistical analysis : AStA : a journal of the German Statistical Society 2016-01, Vol.100 (1), p.79-97
Hauptverfasser: Ferrari, Silvia L. P., Pinheiro, Eliane C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive adjusted signed likelihood ratio statistics for a general class of extreme value regression models. The adjustments reduce the error in the standard normal approximation to the distribution of the signed likelihood ratio statistic. We use Monte Carlo simulations to compare the finite-sample performance of the different tests. Our simulations suggest that the signed likelihood ratio test tends to be liberal when the sample size is not large and that the adjustments are effective in shrinking the size distortion. Two real data applications are presented and discussed.
ISSN:1863-8171
1863-818X
DOI:10.1007/s10182-015-0251-y