An update-and-stabilize framework for the minimum-norm-point problem

We consider the minimum-norm-point (MNP) problem over polyhedra, a well-studied problem that encompasses linear programming. We present a general algorithmic framework that combines two fundamental approaches for this problem: active set methods and first order methods. Our algorithm performs first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2024-04
Hauptverfasser: Fujishige, Satoru, Kitahara, Tomonari, Végh, László A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the minimum-norm-point (MNP) problem over polyhedra, a well-studied problem that encompasses linear programming. We present a general algorithmic framework that combines two fundamental approaches for this problem: active set methods and first order methods. Our algorithm performs first order update steps, followed by iterations that aim to ‘stabilize’ the current iterate with additional projections, i.e., find a locally optimal solution whilst keeping the current tight inequalities. Such steps have been previously used in active set methods for the nonnegative least squares (NNLS) problem. We bound on the number of iterations polynomially in the dimension and in the associated circuit imbalance measure. In particular, the algorithm is strongly polynomial for network flow instances. Classical NNLS algorithms such as the Lawson–Hanson algorithm are special instantiations of our framework; as a consequence, we obtain convergence bounds for these algorithms. Our preliminary computational experiments show promising practical performance.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-024-02077-0