Effect of microbial-induced calcite precipitation towards strength and permeability of peat
Peat is known as problematic ground with low bearing capacity and extensively high compressibility. Bio-cementation or commonly known as microbial-induced calcite precipitation (MICP) has been recently introduced as a ground improvement alternative for peat under waterlogged condition. Using isolate...
Gespeichert in:
Veröffentlicht in: | Bulletin of engineering geology and the environment 2022-08, Vol.81 (8), Article 314 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Peat is known as problematic ground with low bearing capacity and extensively high compressibility. Bio-cementation or commonly known as microbial-induced calcite precipitation (MICP) has been recently introduced as a ground improvement alternative for peat under waterlogged condition. Using isolated bacteria strains P19 and P21 from tropical peat, it is found that unconfined compression strength (UCS) increases with bacteria concentration at a reducing rate. A maximum unconfined compressive strength of 82.05 kPa was measured with bacteria strain P21 at 10
8
CFU/mL. For the range of cementation reagent varying from 0.1 to 4.0 mol/kg, the largest strength improvement occurred at 1 mol/kg and 2 mol/kg using indigenous bacteria and bacteria strain P21, respectively, for peat with sand content of 25%. At 4.0 mol/kg, the cementation reagent has detrimental effect to MICP resulting in significant reduction in strength. Due to MICP, the UCS of peat increases with sand content. Calcium carbonate precipitation results in a reduction of permeability and an increment of strength of peat–sand mixture under a submerged condition up to 28 days. |
---|---|
ISSN: | 1435-9529 1435-9537 |
DOI: | 10.1007/s10064-022-02790-0 |