Post-peak behaviour of rocks under cyclic loading using a double-criteria damage-controlled test method
Cyclic loading–induced hazards are severe instability problems concerning surface and underground geotechnical projects. Therefore, it is crucial to understand the rock failure mechanism under cyclic loading. An innovative double-criteria damage-controlled testing method was proposed in this study t...
Gespeichert in:
Veröffentlicht in: | Bulletin of engineering geology and the environment 2021-02, Vol.80 (2), p.1713-1727 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyclic loading–induced hazards are severe instability problems concerning surface and underground geotechnical projects. Therefore, it is crucial to understand the rock failure mechanism under cyclic loading. An innovative double-criteria damage-controlled testing method was proposed in this study to capture the complete stress–strain response of porous limestone, especially the post-peak behaviour, under systematic cyclic loading. The proposed test method was successful in applying the pre-peak cyclic loading and then in controlling the self-sustaining failure of rock during the post-peak cyclic loading. The results showed that the strength of the rock specimens slightly increased with an increase in the fatigue life in the pre-peak region due to cyclic loading–induced hardening. Additionally, a combination of class I and class II behaviours was observed in the post-peak region during the cyclic loading tests; the class II behaviour was more dominant by the increase in fatigue life in the pre-peak region. Damage evolution was assessed based on several parameters, such as the elastic modulus, energy dissipation ratio, damage variable and crack damage threshold stress, both in the pre-peak and post-peak regions. It was found that when the cyclic loading stress is not close to the peak strength, due to a coupled mechanism of dilatant microcracking and grain crushing and pore filling, quasi-elastic behaviour dominates the cyclic loading history, causing more elastic strain energy to accumulate in the specimens. |
---|---|
ISSN: | 1435-9529 1435-9537 |
DOI: | 10.1007/s10064-020-02035-y |