Bayesian mixture of AR models for time series clustering

In this paper, we propose a Bayesian framework for estimation of parameters of a mixture of autoregressive models for time series clustering. The proposed approach is based on variational principles and provides a tractable approximation to the true posterior density that minimizes Kullback–Liebler...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2013-05, Vol.16 (2), p.179-200
Hauptverfasser: Venkataramana Kini, B., Chandra Sekhar, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a Bayesian framework for estimation of parameters of a mixture of autoregressive models for time series clustering. The proposed approach is based on variational principles and provides a tractable approximation to the true posterior density that minimizes Kullback–Liebler (KL) divergence with respect to prior distribution. This method simultaneously addresses the model complexity and parameter estimation problems. The proposed approach is applied both on simulated and real-world time series datasets. It is found to be useful in exploring and finding the true number of underlying clusters, starting from an arbitrarily large number of clusters.
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-011-0247-5