Bayesian mixture of AR models for time series clustering
In this paper, we propose a Bayesian framework for estimation of parameters of a mixture of autoregressive models for time series clustering. The proposed approach is based on variational principles and provides a tractable approximation to the true posterior density that minimizes Kullback–Liebler...
Gespeichert in:
Veröffentlicht in: | Pattern analysis and applications : PAA 2013-05, Vol.16 (2), p.179-200 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a Bayesian framework for estimation of parameters of a mixture of autoregressive models for time series clustering. The proposed approach is based on variational principles and provides a tractable approximation to the true posterior density that minimizes Kullback–Liebler (KL) divergence with respect to prior distribution. This method simultaneously addresses the model complexity and parameter estimation problems. The proposed approach is applied both on simulated and real-world time series datasets. It is found to be useful in exploring and finding the true number of underlying clusters, starting from an arbitrarily large number of clusters. |
---|---|
ISSN: | 1433-7541 1433-755X |
DOI: | 10.1007/s10044-011-0247-5 |