Distributional-based texture classification using non-parametric statistics

Texture classification is an important problem in image analysis. In the present study, an efficient strategy for classifying texture images is introduced and examined within a distributional-statistical framework. Our approach incorporates the multivariate Wald–Wolfowitz test (WW-test), a non-param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2008-06, Vol.11 (2), p.117-129
Hauptverfasser: Pothos, Vasileios K., Theoharatos, Christos, Zygouris, Evangelos, Economou, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Texture classification is an important problem in image analysis. In the present study, an efficient strategy for classifying texture images is introduced and examined within a distributional-statistical framework. Our approach incorporates the multivariate Wald–Wolfowitz test (WW-test), a non-parametric statistical test that measures the similarity between two different sets of multivariate data, which is utilized here for comparing texture distributions. By summarizing the texture information using standard feature extraction methodologies, the similarity measure provides a comprehensive estimate of the match between different images based on graph theory. The proposed “distributional metric” is shown to handle efficiently the texture-space dimensionality and the limited sample size drawn from a given image. The experimental results, from the application on a typical texture database, clearly demonstrate the effectiveness of our approach and its superiority over other well-established texture distribution (dis)similarity metrics. In addition, its performance is used to evaluate several approaches for texture representation. Even though the classification results are obtained on grayscale images, a direct extension to color-based ones can be straightforward.
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-007-0083-9