Wind profiling from high troposphere to low stratosphere using a scanning Rayleigh Doppler lidar
A scanning mobile Rayleigh Doppler lidar based on the molecular double-edge technique is developed for wind measurement from high troposphere to low stratosphere in 5–35 km. To get higher optical efficiency and make the system more stable, a non-polarized beam splitter cube optically contacted to th...
Gespeichert in:
Veröffentlicht in: | Optical review (Tokyo, Japan) Japan), 2018-12, Vol.25 (6), p.720-728 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A scanning mobile Rayleigh Doppler lidar based on the molecular double-edge technique is developed for wind measurement from high troposphere to low stratosphere in 5–35 km. To get higher optical efficiency and make the system more stable, a non-polarized beam splitter cube optically contacted to the FPI is used. This layout also provides a convenient method for null Doppler calibration. The laser frequency drift is measured by a wavelength meter and laser frequency locking is performed and an accuracy of ± 0.5 m/s are obtained in 10 h. Horizontal wind velocity and direction retrieval is described for a detecting method of scanning in four directions. To validate the performance of the lidar, comparison experiments were carried out in in Jiuquan (39.741°N, 98.495°E), Gansu province, northwest of China, from 16th October to 12th November 2015, which showed good agreement with radiosonde. |
---|---|
ISSN: | 1340-6000 1349-9432 |
DOI: | 10.1007/s10043-018-0471-y |