Structure Preserving Discretization of Allen–Cahn Type Problems Modeling the Motion of Phase Boundaries

We study the systematic numerical approximation of a class of Allen–Cahn type problems modeling the motion of phase interfaces. The common feature of these models is an underlying gradient flow structure which gives rise to a decay of an associated energy functional along solution trajectories. We f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2020-12, Vol.48 (4), p.847-863
Hauptverfasser: Böttcher, Anke, Egger, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the systematic numerical approximation of a class of Allen–Cahn type problems modeling the motion of phase interfaces. The common feature of these models is an underlying gradient flow structure which gives rise to a decay of an associated energy functional along solution trajectories. We first study the discretization in space by a conforming Galerkin approximation of a variational principle which characterizes smooth solutions of the problem. Well-posedness of the resulting semi-discretization is established and the energy decay along discrete solution trajectories is proven. A problem adapted implicit time-stepping scheme is then proposed and we establish its well-posed and decay of the free energy for the fully discrete scheme. Some details about the numerical realization by finite elements are discussed, in particular the iterative solution of the nonlinear problems arising in every time-step. The theoretical results are illustrated by numerical tests which also provide further evidence for asymptotic expansions of the interface velocities derived by Alber et al. and support the observation that their hybrid Allen–Cahn model avoids the problem of mesh-locking to a large extent.
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-020-00428-w