GBL-based electrolyte for Li-ion battery: thermal and electrochemical performance
Thermal stability, flammability, and electrochemical performances of the cyclic carbonate-based electrolytes [where γ-butyrolactone (GBL) is a main component (at least 50 vol.%) among of EC and PC with LiBF 4 ] have been examined in comparison with contemporary (EC/EMC, 1:3 vol.%, 1 M LiPF 6 ) elect...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2012-02, Vol.16 (2), p.603-615 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermal stability, flammability, and electrochemical performances of the cyclic carbonate-based electrolytes [where γ-butyrolactone (GBL) is a main component (at least 50 vol.%) among of EC and PC with LiBF
4
] have been examined in comparison with contemporary (EC/EMC, 1:3 vol.%, 1 M LiPF
6
) electrolyte by DSC, accelerating rate calorimetry (ARC), AC impedance, and cyclic voltammetry (CV). This study shows that GBL-based electrolytes have perfect thermal stability and will improve Li-ion battery safety (including flammability) without performance trade-off with the accurate combination of active materials and separator. Several types of negative electrode materials (such as hard carbon, MCMB, and SWF) have been tested to evaluate GBL-based electrolyte influence on SEI formation and battery performance. Finally, GBL-based electrolytes show not only equal electrochemical performance in comparison to commonly used electrolytes (EC/EMC in this study) but it will notably improve battery safety. |
---|---|
ISSN: | 1432-8488 1433-0768 |
DOI: | 10.1007/s10008-011-1391-y |