Metallurgical factors in stress corrosion cracking (SCC) and hydrogen-induced cracking (HIC)

Nonmetallic inclusions can affect resistance of steels to both general and localized corrosion, including pitting corrosion, stress corrosion cracking (SCC), and hydrogen-induced cracking (HIC). Because stress corrosion cracks frequently initiate at pits, and pits nucleate at sulfides, the presence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2009-07, Vol.13 (7), p.1091-1099
Hauptverfasser: Elboujdaini, M., Revie, R. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonmetallic inclusions can affect resistance of steels to both general and localized corrosion, including pitting corrosion, stress corrosion cracking (SCC), and hydrogen-induced cracking (HIC). Because stress corrosion cracks frequently initiate at pits, and pits nucleate at sulfides, the presence of sulfides is likely to affect the SCC process. Nonmetallic inclusions increase susceptibility of steel to HIC, which occurs by the formation of internal hydrogen blisters or blister-like cracks at internal delaminations or at nonmetallic inclusions in low strength materials. HIC occurs when H atoms diffusing through a linepipe steel become trapped and form H 2 molecules at inhomogeneities in the steel. A planar, gas-filled defect is created, which grows parallel to the pipe surface as it continues to trap more diffusing H atoms. If the defect grows sufficiently large, it may develop into a blister. HIC failure occurs if a mechanism exists for linkage of defects or blisters with the internal and external surfaces. The H atom source is normally the cathodic reaction of an acid corrosion mechanism occurring at the internal linepipe surface, i.e., the reduction of hydrogen ions, H + :
ISSN:1432-8488
1433-0768
DOI:10.1007/s10008-009-0799-0