Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients

We consider the numerical solution of elliptic partial differential equations with random coefficients. Such problems arise, for example, in uncertainty quantification for groundwater flow. We describe a novel variance reduction technique for the standard Monte Carlo method, called the multilevel Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing and visualization in science 2011, Vol.14 (1), p.3-15
Hauptverfasser: Cliffe, K. A., Giles, M. B., Scheichl, R., Teckentrup, A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the numerical solution of elliptic partial differential equations with random coefficients. Such problems arise, for example, in uncertainty quantification for groundwater flow. We describe a novel variance reduction technique for the standard Monte Carlo method, called the multilevel Monte Carlo method, and demonstrate numerically its superiority. The asymptotic cost of solving the stochastic problem with the multilevel method is always significantly lower than that of the standard method and grows only proportionally to the cost of solving the deterministic problem in certain circumstances. Numerical calculations demonstrating the effectiveness of the method for one- and two-dimensional model problems arising in groundwater flow are presented.
ISSN:1432-9360
1433-0369
DOI:10.1007/s00791-011-0160-x