Accuracy of intraoral scan images in full arch with orthodontic brackets: a retrospective in vivo study

Objectives The purpose of this retrospective study was to evaluate the accuracy of intraoral scan (IOS) images in the maxillary and mandibular arches with orthodontic brackets. Material and methods From digital impressions of 140 patients who underwent orthodontic treatment, consecutive IOS images w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical oral investigations 2021-08, Vol.25 (8), p.4861-4869
Hauptverfasser: Kim, Young-Kyun, Kim, So-Hyun, Choi, Tae-Hyun, Yen, Edwin H., Zou, Bingshuang, Shin, Yonsoo, Lee, Nam-Ki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives The purpose of this retrospective study was to evaluate the accuracy of intraoral scan (IOS) images in the maxillary and mandibular arches with orthodontic brackets. Material and methods From digital impressions of 140 patients who underwent orthodontic treatment, consecutive IOS images were selected based on standardized inclusion criteria: Two pre-orthodontic IOS images (IOS1 and IOS2) of permanent dentition with fully erupted second molars and IOS images obtained immediately after orthodontic bracket bonding (IOSb). Superimpositions were performed to evaluate the reproducibility of repeated IOS images. Accuracy of IOSb images was analyzed by comparing the average surface errors between IOS1c and IOS2c images, which were IOS images cut based on the same region of the interest as between IOS1 and IOSb images. Results A total of 84 IOS images was analyzed. The average surface errors between IOS1 and IOS2 images were 57 ± 8 μm and 59 ± 14 μm in the maxillary and mandibular arch, respectively, and their reliability was almost perfect. The average errors between IOSb and IOS1c images exhibited an increase, which measured 97 ± 28 μm in the maxillary arch and 95 ± 29 μm in the mandibular arch. These surface deviations between IOSb and IOS1c images were significantly larger in each region as well as entire dentition ( P  
ISSN:1432-6981
1436-3771
DOI:10.1007/s00784-021-03792-0