Dynamic monitoring of optimal locations in road network databases

Optimal location (OL) queries are a type of spatial queries that are particularly useful for the strategic planning of resources. Given a set of existing facilities and a set of clients, an OL query asks for a location to build a new facility that optimizes a certain cost metric (defined based on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The VLDB journal 2014-10, Vol.23 (5), p.697-720
Hauptverfasser: Yao, Bin, Xiao, Xiaokui, Li, Feifei, Wu, Yifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimal location (OL) queries are a type of spatial queries that are particularly useful for the strategic planning of resources. Given a set of existing facilities and a set of clients, an OL query asks for a location to build a new facility that optimizes a certain cost metric (defined based on the distances between the clients and the facilities). Several techniques have been proposed to address OL queries, assuming that all clients and facilities reside in an L p space . In practice, however, movements between spatial locations are usually confined by the underlying road network, and hence, the actual distance between two locations can differ significantly from their L p distance. Motivated by the deficiency of the existing techniques, this paper presents a comprehensive study on OL queries in road networks. We propose a unified framework that addresses three variants of OL queries that find important applications in practice, and we instantiate the framework with several novel query processing algorithms. We further extend our framework to efficiently monitor the OLs when locations for facilities and/or clients have been updated. Our dynamic update methods lead to efficient answering of continuous optimal location queries. We demonstrate the efficiency of our solutions through extensive experiments with large real data.
ISSN:1066-8888
0949-877X
DOI:10.1007/s00778-013-0347-5