GATA1/SP1 and miR-874 mediate enterovirus-71-induced apoptosis in a granzyme-B-dependent manner in Jurkat cells

Enterovirus 71 (EV71)-induced T lymphocyte apoptosis plays an important role in hand, foot, and mouth disease (HFMD), and granzyme B (GZMB) has been shown to be critical for this process. However, the mechanisms underlying GZMB-mediated apoptosis of T lymphocytes remain unknown. In this study, we in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of virology 2020-11, Vol.165 (11), p.2531-2540
Hauptverfasser: Zhang, Meijuan, Chen, Ying, Cheng, Xiangjun, Cai, Zhenzhen, Qiu, Shengfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enterovirus 71 (EV71)-induced T lymphocyte apoptosis plays an important role in hand, foot, and mouth disease (HFMD), and granzyme B (GZMB) has been shown to be critical for this process. However, the mechanisms underlying GZMB-mediated apoptosis of T lymphocytes remain unknown. In this study, we investigated whether transcription factors and microRNAs (miRNAs) are involved in GZMB-mediated apoptosis of T lymphocytes in response to EV71 infection. Our findings indicated that EV71 infection significantly induced apoptosis in Jurkat cells, a human T lymphocytes cell line, as revealed in flow cytometric analysis. Furthermore, EV71 increased the expression of pro-apoptosis Bcl-2-associated X (Bax) and cleaved caspase 3 but decreased the expression of anti-apoptosis B-cell lymphoma protein 2 (Bcl2). GZMB knockdown decreased cell apoptosis and prevented EV71-induced changes in the expression of Bax, cleaved caspase 3, and Bcl2 in Jurkat cells, highlighting the role of GZMB as a key factor in EV71-induced apoptosis. Our study also indicated that overexpression of the transcription factors GATA binding factor 1 (GATA1) and specificity protein 1 (SP1) significantly increased luciferase activity when this gene was inserted in the GZMB 3’ untranslated region (3’UTR). GATA1/SP1 overexpression induced cell apoptosis, increased the expression of Bax and cleaved caspase 3, and decreased the expression of Bcl2. Finally, our results suggested that miR-874 plays an essential role in GZMB-mediated cell apoptosis, since an miR-874 mimic decreases the expression of GZMB by targeting its 3’UTR. Collectively, these data indicated that GATA1/SP1 and miR-874 mediate EV71-induced apoptosis in a granzyme B-dependent manner. This signaling pathway may provide a new pharmacological target for the prevention and treatment of HFMD.
ISSN:0304-8608
1432-8798
DOI:10.1007/s00705-020-04783-4