Differential genetic associations and expression of PAPST1/SLC35B2 in bipolar disorder and schizophrenia
Lithium’s inhibitory effect on enzymes involved in sulfation process, such as inhibition of 3’(2’)-phosphoadenosine 5’-phosphate (PAP) phosphatase, is a possible mechanism of its therapeutic effect for bipolar disorder (BD). 3’-Phosphoadenosine 5’-phosphosulfate (PAPS) is translocated from cytosol t...
Gespeichert in:
Veröffentlicht in: | Journal of Neural Transmission 2022-07, Vol.129 (7), p.913-924 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium’s inhibitory effect on enzymes involved in sulfation process, such as inhibition of 3’(2’)-phosphoadenosine 5’-phosphate (PAP) phosphatase, is a possible mechanism of its therapeutic effect for bipolar disorder (BD). 3’-Phosphoadenosine 5’-phosphosulfate (PAPS) is translocated from cytosol to Golgi lumen by PAPS transporter 1 (PAPST1/SLC35B2), where it acts as a sulfa donor. Since SLC35B2 was previously recognized as a molecule that facilitates the release of D-serine, a co-agonist of N-methyl-D-aspartate type glutamate receptor, altered function of SLC35B2 might be associated with the pathophysiology of BD and schizophrenia (SCZ). We performed genetic association analyses of the
SLC35B2
gene using Japanese cohorts with 366 BD cases and 370 controls and 2012 SCZ cases and 2170 controls. We then investigated expression of
SLC35B2
mRNA in postmortem brains by QPCR using a Caucasian cohort with 33 BD and 34 SCZ cases and 34 controls and by in situ hybridization using a Caucasian cohort with 37 SCZ and 29 controls. We found significant associations between three SNPs (rs575034, rs1875324, and rs3832441) and BD, and significantly reduced
SLC35B2
mRNA expression in postmortem dorsolateral prefrontal cortex (DLPFC) of BD. Moreover, we observed normalized
SLC35B2
mRNA expression in BD subgroups who were medicated with lithium. While there was a significant association of
SLC35B2
with SCZ (SNP rs2233437), its expression was not changed in SCZ. These findings indicate that
SLC35B2
might be differentially involved in the pathophysiology of BD and SCZ by influencing the sulfation process and/or glutamate system in the central nervous system. |
---|---|
ISSN: | 0300-9564 1435-1463 |
DOI: | 10.1007/s00702-022-02503-7 |