On the structure of submanifolds in the hyperbolic space
Let M n be a complete submanifold in the hyperbolic space H n + m . We show the vanishing of the Betti numbers β p ( M ) , 1 ≤ p ≤ n - 1 , if M is compact and the squared norm of the mean curvature satisfies some pinching condition. In the noncompact case, we prove various vanishing theorems of L q...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2016-07, Vol.180 (3), p.579-594 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
n
be a complete submanifold in the hyperbolic space
H
n
+
m
. We show the vanishing of the Betti numbers
β
p
(
M
)
,
1
≤
p
≤
n
-
1
, if
M
is compact and the squared norm of the mean curvature satisfies some pinching condition. In the noncompact case, we prove various vanishing theorems of
L
q
harmonic
p
-forms on
M
n
if the mean curvature is bounded from above or below, and the total curvature is less than an explicit constant or some stability type inequality holds on
M
n
. Finally, by putting some restrictions on the bottom of the spectrum of the Laplace operator, we can also get some vanishing theorems. On the other hand, based on the nonexistence of nontrivial
L
2
harmonic 1-forms on
M
n
, we can further show some one-end theorems under various hypotheses. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-015-0851-3 |