Sharp weak type estimates for Riesz transforms
Let d be a given positive integer and let { R j } j = 1 d denote the collection of Riesz transforms on R d . For 1 < p < ∞ , we determine the best constant C p such that the following holds. For any locally integrable function f on R d and any j ∈ { 1 , 2 , … , d } , | | ( R j f ) + | | L p ,...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2014-06, Vol.174 (2), p.305-327 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
d
be a given positive integer and let
{
R
j
}
j
=
1
d
denote the collection of Riesz transforms on
R
d
. For
1
<
p
<
∞
, we determine the best constant
C
p
such that the following holds. For any locally integrable function
f
on
R
d
and any
j
∈
{
1
,
2
,
…
,
d
}
,
|
|
(
R
j
f
)
+
|
|
L
p
,
∞
(
R
d
)
≤
C
p
|
|
f
|
|
L
p
,
∞
(
R
d
)
.
A related statement for Riesz transforms on spheres is also established. The proofs exploit Gundy–Varopoulos representation of Riesz transforms and appropriate inequality for orthogonal martingales. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-014-0613-7 |