On cell modules of symmetric cellular algebras
Let A be a symmetric cellular algebra with cell datum (Λ, M , C , i ) and let . We prove that Λ 1 consists of two parts: one gives a lower bound for the cardinality of the set of cell modules with zero bilinear forms and the other parametrizes all the projective cell modules. Moreover, it is proved...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2012-10, Vol.168 (1), p.49-64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
be a symmetric cellular algebra with cell datum (Λ,
M
,
C
,
i
) and let
. We prove that Λ
1
consists of two parts: one gives a lower bound for the cardinality of the set of cell modules with zero bilinear forms and the other parametrizes all the projective cell modules. Moreover, it is proved in Li (arxiv: math0911.3524,
2009
) that the dual basis of
is again cellular. In this paper, we will study the cell modules defined by dual basis. In particular, we study the dual basis of the Murphy basis. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-011-0349-6 |