On cell modules of symmetric cellular algebras

Let A be a symmetric cellular algebra with cell datum (Λ, M , C , i ) and let . We prove that Λ 1 consists of two parts: one gives a lower bound for the cardinality of the set of cell modules with zero bilinear forms and the other parametrizes all the projective cell modules. Moreover, it is proved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2012-10, Vol.168 (1), p.49-64
Hauptverfasser: Li, Yanbo, Xiao, Zhankui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a symmetric cellular algebra with cell datum (Λ, M , C , i ) and let . We prove that Λ 1 consists of two parts: one gives a lower bound for the cardinality of the set of cell modules with zero bilinear forms and the other parametrizes all the projective cell modules. Moreover, it is proved in Li (arxiv: math0911.3524, 2009 ) that the dual basis of is again cellular. In this paper, we will study the cell modules defined by dual basis. In particular, we study the dual basis of the Murphy basis.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-011-0349-6