Extension of formal conjugations between diffeomorphisms

We study the formal conjugacy properties of germs of complex analytic diffeomorphisms defined in the neighborhood of the origin of ℂ n . More precisely, we are interested in the nature of formal conjugations along the fixed points set. We prove that there are formally conjugated local diffeomorphism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2012-06, Vol.43 (2), p.247-283
1. Verfasser: Ribón, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the formal conjugacy properties of germs of complex analytic diffeomorphisms defined in the neighborhood of the origin of ℂ n . More precisely, we are interested in the nature of formal conjugations along the fixed points set. We prove that there are formally conjugated local diffeomorphisms φ, η such that every formal conjugation (i.e. ) does not extend to the fixed points set Fix ( φ ) of φ , meaning that it is not transversally formal (or semi-convergent) along Fix ( φ ). We focus on unfoldings of 1-dimensional tangent to the identity diffeomorphisms. We identify the geometrical configurations preventing formal conjugations to extend to the fixed points set: roughly speaking, either the unperturbed fiber is singular or generic fibers contain multiple fixed points.
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-012-0012-4