Automated insertion of package dies onto wire and into a textile yarn sheath

Wider adoption of electronic textiles requires integration of small electronic components into textile fabrics, without comprising the textile qualities. A solution is to create a flexible yarn that incorporates electronic components within the fibres of the yarn (E-yarn). The production of these no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2022-06, Vol.28 (6), p.1409-1421
Hauptverfasser: Hardy, Dorothy Anne, Anastasopoulos, Ioannis, Nashed, Mohamad-Nour, Oliveira, Carlos, Hughes-Riley, Theodore, Komolafe, Abiodun, Tudor, John, Torah, Russel, Beeby, Steve, Dias, Tilak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wider adoption of electronic textiles requires integration of small electronic components into textile fabrics, without comprising the textile qualities. A solution is to create a flexible yarn that incorporates electronic components within the fibres of the yarn (E-yarn). The production of these novel E-yarns was initially a craft skill, with the inclusion of package dies within the fibres of the yarn taking about 90 min. The research described here demonstrated that it is possible to produce E-yarns on an industrial scale by automating the manufacturing process. This involved adapting printed circuit board manufacturing technology and textile yarn covering machinery. The production process started with re-flow soldering of package dies onto fine multi-strand copper wire. A carrier yarn was then placed in parallel with the copper wire to provide tensile strength. The package die and adjacent carrier yarn were then encapsulated in a polymer micro-pod to provide protection from moisture ingress and from mechanical strain on the die and solder joints. The process was then completed by surrounding the micro-pod and copper interconnects with additional fibres, held tightly together with a knitted fibre-sheath. This prototype, automated production process reduced the time for embedding one micro-device within a yarn to 6 min, thus increasing the production speed, demonstrating that automation of the E-yarn production process is feasible. Prototype garments have been created using E- yarns. Further developments can include automated transfer of the yarn components from one stage of production to the next, enabling greater increases in speed of manufacture of E yarns.
ISSN:0946-7076
1432-1858
DOI:10.1007/s00542-019-04361-y