Automated insertion of package dies onto wire and into a textile yarn sheath
Wider adoption of electronic textiles requires integration of small electronic components into textile fabrics, without comprising the textile qualities. A solution is to create a flexible yarn that incorporates electronic components within the fibres of the yarn (E-yarn). The production of these no...
Gespeichert in:
Veröffentlicht in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2022-06, Vol.28 (6), p.1409-1421 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wider adoption of electronic textiles requires integration of small electronic components into textile fabrics, without comprising the textile qualities. A solution is to create a flexible yarn that incorporates electronic components within the fibres of the yarn (E-yarn). The production of these novel E-yarns was initially a craft skill, with the inclusion of package dies within the fibres of the yarn taking about 90 min. The research described here demonstrated that it is possible to produce E-yarns on an industrial scale by automating the manufacturing process. This involved adapting printed circuit board manufacturing technology and textile yarn covering machinery. The production process started with re-flow soldering of package dies onto fine multi-strand copper wire. A carrier yarn was then placed in parallel with the copper wire to provide tensile strength. The package die and adjacent carrier yarn were then encapsulated in a polymer micro-pod to provide protection from moisture ingress and from mechanical strain on the die and solder joints. The process was then completed by surrounding the micro-pod and copper interconnects with additional fibres, held tightly together with a knitted fibre-sheath. This prototype, automated production process reduced the time for embedding one micro-device within a yarn to 6 min, thus increasing the production speed, demonstrating that automation of the E-yarn production process is feasible. Prototype garments have been created using E- yarns. Further developments can include automated transfer of the yarn components from one stage of production to the next, enabling greater increases in speed of manufacture of E yarns. |
---|---|
ISSN: | 0946-7076 1432-1858 |
DOI: | 10.1007/s00542-019-04361-y |