Fabrication of high fill-factor aspheric microlens array by dose-modulated lithography and low temperature thermal reflow
A cost-effective fabrication method for high quality and high fill-factor aspheric microlens arrays (MLAs) is developed. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography system. Digi...
Gespeichert in:
Veröffentlicht in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2019-04, Vol.25 (4), p.1235-1241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cost-effective fabrication method for high quality and high fill-factor aspheric microlens arrays (MLAs) is developed. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography system. Digital masks for several bottom layers are replaced from circle to hexagon for the purpose of enhancing the fill-factor of MLAs, then a low temperature thermal reflow process is conducted, after which the average surface roughness of microlens is improved to ~ 0.427 nm while the pre-modeled profile keeps unchanged. Experimental results show that the fabricated aspheric MLAs have almost 100% fill-factor, high shape accuracy and high surface quality. The presented method may provide a promising approach for rapidly fabricating high quality and high fill-factor aspheric microlens in a simple and low-cost way. |
---|---|
ISSN: | 0946-7076 1432-1858 |
DOI: | 10.1007/s00542-018-4226-2 |