Dual-wavelength transmission system using double micro-resonator system for EMI healthcare applications

To meet the 5G requirements for higher bandwidth, the focus has been shifted to millimeter waves paving the way to radio over fiber (RoF) in order to minimize radio losses. Dual wavelength transmission within RoF for electromagnetic immunity interference (EMI) can be utilized within local area netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2019-04, Vol.25 (4), p.1185-1193
Hauptverfasser: Amiri, I. S., Bunruangses, M., Chaiwong, K., Udaiyakumar, R., Maheswar, R., Hindia, M. N., Dimyati, K. B., Yupapin, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To meet the 5G requirements for higher bandwidth, the focus has been shifted to millimeter waves paving the way to radio over fiber (RoF) in order to minimize radio losses. Dual wavelength transmission within RoF for electromagnetic immunity interference (EMI) can be utilized within local area network and long-haul transmission. Health care services will also be able to utilize the technology to transmit health-related data from thousands of patients to the specific destination by connecting to the long-haul fiber optic cable connection. To make dual-wavelength transmission stable and reliable, the formation of the two-wavelength light source is proposed in this paper by means of the double coupled micro-ring resonators. The proposed RoF system will be able to transmit EMI signals of patients over 300 km of optical fiber link and 3 m wireless link without the need for any intermediate signal amplifying device. All the patient’s data will be available to any doctor in any hospital securely by integrating with currently available wireless and the internet of things systems.
ISSN:0946-7076
1432-1858
DOI:10.1007/s00542-018-4022-z