Design and fabrication of micro-nano fusion gas sensor based on two-beam micro-hotplatform

Micro-nano fusion gas sensors integrating two-beam micro-hotplatform with nanostructured porous film were fabricated in this study. The micro-hotplatform (MHP) was manufactured using standard micro-electro-mechanical systems technology in wafer runs. Based on a colloidal crystal template method, hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2017-07, Vol.23 (7), p.2699-2705
Hauptverfasser: Guo, Lianfeng, Xu, Lei, Xu, Zongke, Duan, Guotao, Wang, Yi, Zhou, Hong, Liu, Yanxiang, Cai, Weiping, Wang, Yuelin, Li, Tie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro-nano fusion gas sensors integrating two-beam micro-hotplatform with nanostructured porous film were fabricated in this study. The micro-hotplatform (MHP) was manufactured using standard micro-electro-mechanical systems technology in wafer runs. Based on a colloidal crystal template method, highly ordered porous tin dioxide films were in situ grown on the MHP. The as-fabricated sensors achieved the highest response at 250 °C with power consumption only 24 mW. Due to the low thermal capacity and ordered porous thin films of the sensor, the response time was about 2 s. The sensors are sensitive to ethanol in a large range from 0.1 to 250 ppm. The developed sensor here with high performance is an excellent candidate which can be incorporated into portable devices for alcohol detection such as breath analyzers.
ISSN:0946-7076
1432-1858
DOI:10.1007/s00542-016-3091-0