Study on the effect of heating plate thickness on the micro induction heater for thermal bubbles generation

This paper designed a micro planar induction heater for thermal bubbles generation. The micro heater which consists of a micro planar coil, a copper heating plate and a glass slide was fabricated with MEMS fabrication process. The relations between the heating performance and the thickness of heatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2016-05, Vol.22 (5), p.1005-1011
Hauptverfasser: Liu, Bendong, Hou, Yuepeng, Sun, Jianchuang, Yang, Jiahui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper designed a micro planar induction heater for thermal bubbles generation. The micro heater which consists of a micro planar coil, a copper heating plate and a glass slide was fabricated with MEMS fabrication process. The relations between the heating performance and the thickness of heating plate were studied in the simulation with the software of COMSOL. The experimental system has been built and the experimental tests for thermal bubble generation have been also carried out with the prototype. The process of thermal bubbles generation was recorded by the video camera. The frequency of AC current applied in the experiment is 100 kHz and the heating time of 1 s. The experimental results indicated that the micro heater has the best heating performance with the heating plate thickness of 12–16 μm, and the minimum power for thermal bubbles generation was only 0.427 W. This micro heater can be applied to a variety of thermal bubble devices, such as micro actuator, micro ejector and micro pump.
ISSN:0946-7076
1432-1858
DOI:10.1007/s00542-015-2466-y