Relationships between process, microstructure and properties of molded zirconia micro specimens

Due to size effects the mechanical behavior of micro-components with dimensions in the range of some 100 μm and structure details of about 10 μm differs markedly from those of larger components. This is a crucial aspect for the design of micro-components for applications where demands for high stren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microsystem technologies 2008-11, Vol.14 (12), p.1831-1837
Hauptverfasser: Rögner, J., Okolo, B., Kurzenhäuser, S., Müller, M., Bauer, W., Ritzhaupt-Kleissl, H.-J., Kerscher, E., Schulze, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to size effects the mechanical behavior of micro-components with dimensions in the range of some 100 μm and structure details of about 10 μm differs markedly from those of larger components. This is a crucial aspect for the design of micro-components for applications where demands for high strength are critical. The present study, which was performed in the frame of the Collaborative Research Centre 499 (SFB 499), approaches this issue by investigating the relationship between production process, microstructure and the mechanical properties of micro-specimens made from zirconia using two different feedstocks. The specimens were produced by a sintering process. The sintering temperature was varied between 1,300 and 1,500°C. Mechanical and tribological behavior of the specimens was determined by three-point bending tests as well as static and sliding friction tests, respectively. Properties derived from these tests were then correlated to the surface states in the specimens such as porosity, edge radius and roughness. The strength of the micro-specimens was found to be significantly influenced by these surface features. Whilst low porosity alone is not sufficient for high strength, notch effects resulting from pores as well as surface roughness can lower the strength. With increasing edge radius the strength of the material also increases. The porosity, edge radius and surface roughness were mathematically correlated with the strength to allow for a forecast. Within the SFB 499 feedstocks with specific properties were designed and reliable processes were developed to guarantee desirable surface roughness and porosity in the specimens. A characteristic bending strength of about 2,000 MPa is realizable in the micro-specimens within a good statistical reliability. The tribological tests revealed that the wear properties of the zirconia micro-components are strongly dependent on the quality of the feedstock.
ISSN:0946-7076
1432-1858
DOI:10.1007/s00542-008-0631-2