Utility of three-dimensional modeling of the fetal airway for ex utero intrapartum treatment

Recent technological developments in three-dimensional (3D) printing have created new opportunities for applications in clinical medicine. 3D printing has been adopted for teaching and planning complicated surgeries, including maxillofacial, orthopedic reconstructions, and airway manipulation for on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of anesthesia 2021-08, Vol.35 (4), p.595-598
Hauptverfasser: Shalev, Shahar, Ben-Sira, Liat, Wasserzug, Oshri, Shaylor, Ruth, Shiran, Shelly I., Ekstein, Margaret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent technological developments in three-dimensional (3D) printing have created new opportunities for applications in clinical medicine. 3D printing has been adopted for teaching and planning complicated surgeries, including maxillofacial, orthopedic reconstructions, and airway manipulation for one-lung ventilation or airway stenting. We present here the first use of such technology to print a model from in utero imaging for intrapartum treatment planning. A 32-week fetus presented with congenital high airway obstruction syndrome (CHAOS) due to a large cervical lymphatic malformation. An ex utero intrapartum treatment (EXIT) procedure was planned to allow delivery of a viable infant. We printed a 3D model of the fetal airway by printing separate elements: mandible, tongue, mass, larynx, and trachea from the fetal MRI. The elements were stuck together maintaining correct anatomical relationships. Airway planning was then performed in consultation with a pediatric ear nose and throat (ENT) surgeon. 3D modeling in utero presents many challenges: the resolution of the 3D model generated from a fetal MRI is less crisp than from CT images, fetal position may be variable and not in a defined anatomical plane, movement artifact occurs. Nevertheless, pre-procedure simulations with the aid of 3D modeling promoted team cooperation and well-prepared management of the fetus during EXIT.
ISSN:0913-8668
1438-8359
DOI:10.1007/s00540-021-02950-8