The Dirichlet problem for Lévy-stable operators with $$L^2$$-data

We prove Sobolev regularity for distributional solutions to the Dirichlet problem for generators of 2 s -stable processes and exterior data, inhomogeneity in weighted $$L^2$$ L 2 -spaces. This class of operators includes the fractional Laplacian. For these rough exterior data the theory of weak vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2024-04, Vol.63 (3), Article 74
Hauptverfasser: Grube, Florian, Hensiek, Thorben, Schefer, Waldemar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove Sobolev regularity for distributional solutions to the Dirichlet problem for generators of 2 s -stable processes and exterior data, inhomogeneity in weighted $$L^2$$ L 2 -spaces. This class of operators includes the fractional Laplacian. For these rough exterior data the theory of weak variational solutions is not applicable. Our regularity estimate is robust in the limit $$s\rightarrow 1-$$ s → 1 - which allows us to recover the local theory.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-024-02679-8