The Dirichlet problem for Lévy-stable operators with $$L^2$$-data
We prove Sobolev regularity for distributional solutions to the Dirichlet problem for generators of 2 s -stable processes and exterior data, inhomogeneity in weighted $$L^2$$ L 2 -spaces. This class of operators includes the fractional Laplacian. For these rough exterior data the theory of weak vari...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2024-04, Vol.63 (3), Article 74 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove Sobolev regularity for distributional solutions to the Dirichlet problem for generators of 2
s
-stable processes and exterior data, inhomogeneity in weighted
$$L^2$$
L
2
-spaces. This class of operators includes the fractional Laplacian. For these rough exterior data the theory of weak variational solutions is not applicable. Our regularity estimate is robust in the limit
$$s\rightarrow 1-$$
s
→
1
-
which allows us to recover the local theory. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-024-02679-8 |