mathcal {A}$$-caloric approximation and partial regularity for parabolic systems with Orlicz growth
We prove a new $$\mathcal {A}$$ A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type $$\begin{aligned} u_{t}- {{\,\textrm{div}\,}}a(Du)=0. \end{aligned}$$ u t - div a ( D u ) = 0 . Here the grow...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023-03, Vol.62 (2), Article 51 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a new
$$\mathcal {A}$$
A
-caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type
$$\begin{aligned} u_{t}- {{\,\textrm{div}\,}}a(Du)=0. \end{aligned}$$
u
t
-
div
a
(
D
u
)
=
0
.
Here the growth of
a
is bounded by the derivative of an
N
-function
$${\varphi }$$
φ
. The primary assumption for
$${\varphi }$$
φ
is that
$$t{\varphi }''(t)$$
t
φ
′
′
(
t
)
and
$${\varphi }'(t)$$
φ
′
(
t
)
are uniformly comparable on
$$(0,\infty )$$
(
0
,
∞
)
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02324-2 |