mathcal {A}$$-caloric approximation and partial regularity for parabolic systems with Orlicz growth

We prove a new $$\mathcal {A}$$ A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type $$\begin{aligned} u_{t}- {{\,\textrm{div}\,}}a(Du)=0. \end{aligned}$$ u t - div a ( D u ) = 0 . Here the grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-03, Vol.62 (2), Article 51
Hauptverfasser: Foss, Mikil, Isernia, Teresa, Leone, Chiara, Verde, Anna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a new $$\mathcal {A}$$ A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type $$\begin{aligned} u_{t}- {{\,\textrm{div}\,}}a(Du)=0. \end{aligned}$$ u t - div a ( D u ) = 0 . Here the growth of a is bounded by the derivative of an N -function $${\varphi }$$ φ . The primary assumption for $${\varphi }$$ φ is that $$t{\varphi }''(t)$$ t φ ′ ′ ( t ) and $${\varphi }'(t)$$ φ ′ ( t ) are uniformly comparable on $$(0,\infty )$$ ( 0 , ∞ ) .
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-022-02324-2