Boundary regularity for the supercritical Lane-Emden heat flow

We establish a Pacard-type monotonicity formula and Morrey bounds up to the boundary for smooth solutions of the Lane-Emden heat flow u t - Δ u = | u | p - 2 u on a general, smoothly bounded domain Ω ⊂ R n , n ≥ 3 , for exponents p > 2 ∗ = 2 n / ( n - 2 ) , extending our previous work on the prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2015-10, Vol.54 (2), p.2269-2284
Hauptverfasser: Blatt, Simon, Struwe, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a Pacard-type monotonicity formula and Morrey bounds up to the boundary for smooth solutions of the Lane-Emden heat flow u t - Δ u = | u | p - 2 u on a general, smoothly bounded domain Ω ⊂ R n , n ≥ 3 , for exponents p > 2 ∗ = 2 n / ( n - 2 ) , extending our previous work on the problem. As a consequence we obtain partially regular, self-similar tangent maps at any first blow-up point of the flow, and partial regularity at the blow-up time if the energy is uniformly bounded from below.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-015-0865-7