Boundary regularity for the supercritical Lane-Emden heat flow
We establish a Pacard-type monotonicity formula and Morrey bounds up to the boundary for smooth solutions of the Lane-Emden heat flow u t - Δ u = | u | p - 2 u on a general, smoothly bounded domain Ω ⊂ R n , n ≥ 3 , for exponents p > 2 ∗ = 2 n / ( n - 2 ) , extending our previous work on the prob...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2015-10, Vol.54 (2), p.2269-2284 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a Pacard-type monotonicity formula and Morrey bounds up to the boundary for smooth solutions of the Lane-Emden heat flow
u
t
-
Δ
u
=
|
u
|
p
-
2
u
on a general, smoothly bounded domain
Ω
⊂
R
n
,
n
≥
3
, for exponents
p
>
2
∗
=
2
n
/
(
n
-
2
)
, extending our previous work on the problem. As a consequence we obtain partially regular, self-similar tangent maps at any first blow-up point of the flow, and partial regularity at the blow-up time if the energy is uniformly bounded from below. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-015-0865-7 |