Energy management strategy for electric vehicles based on deep Q-learning using Bayesian optimization
In this paper, a deep Q -learning (DQL)-based energy management strategy (EMS) is designed for an electric vehicle. Firstly, the energy management problem is reformulated to satisfy the condition of employing DQL by considering the dynamics of the system. Then, to achieve the minimum of electricity...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2020-09, Vol.32 (18), p.14431-14445 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a deep
Q
-learning (DQL)-based energy management strategy (EMS) is designed for an electric vehicle. Firstly, the energy management problem is reformulated to satisfy the condition of employing DQL by considering the dynamics of the system. Then, to achieve the minimum of electricity consumption and the maximum of the battery lifetime, the DQL-based EMS is designed to properly split the power demand into two parts: one is supplied by the battery and the other by supercapacitor. In addition, a hyperparameter tuning method, Bayesian optimization (BO), is introduced to optimize the hyperparameter configuration for the DQL-based EMS. Simulations are conducted to validate the improvements brought by BO and the convergence of DQL algorithm equipped with tuned hyperparameters. Simulations are also carried out on both training dataset and the testing dataset to validate the optimality and the adaptability of the DQL-based EMS, where the developed EMS outperforms a previously published rule-based EMS in almost all the cases. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-019-04556-4 |