A spectral–textural kernel-based classification method of remotely sensed images
Most studies have been based on the original computation mode of semivariogram and discrete semivariance values. In this paper, a set of texture features are described to improve the accuracy of object-oriented classification in remotely sensed images. So, we proposed a classification method support...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2016-02, Vol.27 (2), p.431-446 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most studies have been based on the original computation mode of semivariogram and discrete semivariance values. In this paper, a set of texture features are described to improve the accuracy of object-oriented classification in remotely sensed images. So, we proposed a classification method support vector machine (SVM) with spectral information and texture features (ST-SVM), which incorporates texture features in remotely sensed images into SVM. Using kernel methods, the spectral information and texture features are jointly used for the classification by a SVM formulation. Then, the texture features were calculated based on segmented block matrix image objects using the panchromatic band. A comparison of classification results on real-world data sets demonstrates that the texture features in this paper are useful supplement information for the spectral object-oriented classification, and proposed ST-SVM classification accuracy than the traditional SVM method with only spectral information. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-015-1862-7 |