Relating halftone dot quality to paper surface topography

Most printed material is produced by printing halftone dot patterns. One of the key issues that determine the attainable print quality is the structure of the paper surface, but the relation is non-deterministic in nature. We examine the halftone print quality and study the statistical dependence be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2011-09, Vol.20 (6), p.803-813
Hauptverfasser: Kumpulainen, Pekka, Mettänen, Marja, Lauri, Mikko, Ihalainen, Heimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most printed material is produced by printing halftone dot patterns. One of the key issues that determine the attainable print quality is the structure of the paper surface, but the relation is non-deterministic in nature. We examine the halftone print quality and study the statistical dependence between the defects in printed dots and the topography measurement of the unprinted paper. The work concerns SC paper samples printed by an IGT gravure test printer. We have small-scale 2D measurements of the unprinted paper surface topography and the reflectance of the print result. The measurements before and after printing are aligned with subpixel resolution, and individual printed dots are detected. First, the quality of the printed dots is studied using Self Organizing Map and clustering and the properties of the corresponding areas in the unprinted topography are examined. The printed dots are divided into high and low print quality. Features from the unprinted paper surface topography are then used to classify the corresponding paper areas using Support Vector Machine classification. The results show that the topography of the paper can explain some of the print defects. However, there are many other factors that affect the print quality, and the topography alone is not adequate to predict the print quality.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-010-0497-y