RBF neural networks for solving the inverse problem of backscattering spectra

This paper investigates a new method to solve the inverse problem of Rutherford backscattering (RBS) data. The inverse problem is to determine the sample structure information from measured spectra, which can be defined as a function approximation problem. We propose using radial basis function (RBF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2008-08, Vol.17 (4), p.391-397
Hauptverfasser: Li, Michael M., Verma, Brijesh, Fan, Xiaolong, Tickle, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates a new method to solve the inverse problem of Rutherford backscattering (RBS) data. The inverse problem is to determine the sample structure information from measured spectra, which can be defined as a function approximation problem. We propose using radial basis function (RBF) neural networks to approximate an inverse function. Each RBS spectrum, which may contain up to 128 data points, is compressed by the principal component analysis, so that the dimensionality of input data and complexity of the network are reduced significantly. Our theoretical consideration is tested by numerical experiments with the example of the SiGe thin film sample and corresponding backscattering spectra. A comparison of the RBF method with multilayer perceptrons reveals that the former has better performance in extracting structural information from spectra. Furthermore, the proposed method can handle redundancies properly, which are caused by the constraint of output variables. This study is the first method based on RBF to deal with the inverse RBS data analysis problem.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-007-0138-2