Uncertain programming models for multi-objective shortest path problem with uncertain parameters

The shortest path problem is considered as one of the essential problems in network optimization with a wide range of real-world applications. Modelling such real-world applications involves various indeterminate phenomena which can be estimated through human beliefs. The uncertainty theory proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2020-06, Vol.24 (12), p.8975-8996
Hauptverfasser: Majumder, Saibal, Kar, Mohuya B., Kar, Samarjit, Pal, Tandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The shortest path problem is considered as one of the essential problems in network optimization with a wide range of real-world applications. Modelling such real-world applications involves various indeterminate phenomena which can be estimated through human beliefs. The uncertainty theory proposed by Liu (Uncertain theory, 2nd edn., Springer, Berlin, 2007) is widely regarded as a legitimate tool to deal with such uncertainty. This paper presents an uncertain multi-objective shortest path problem (UMSPP) for a weighted connected directed graph (WCDG), where every edge weight is associated with two uncertain parameters: cost and time. These parameters are represented as uncertain variables. Here, we have formulated the expected value model and chance-constrained model of the proposed UMSPP, and the corresponding deterministic transformation of these models is also presented. Subsequently, the deterministic models are solved with a classical multi-objective solution method, namely the global criterion method. Furthermore, two multi-objective genetic algorithms (MOGAs): nondominated sorting genetic algorithm II (NSGA-II) and multi-objective cross-generational elitist selection, heterogeneous recombination and cataclysmic mutation (MOCHC), are employed to solve these models. A suitable example is provided to illustrate the proposed model. Finally, the performance of MOGAs is compared for five randomly generated instances of UMSPP.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-019-04423-3