On the Ramsey number of the triangle and the cube

The Ramsey number r ( K 3 , Q n ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K N contains either a red n -dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erdős conjectured that r ( K 3 , Q n )=2 n +1 −1 for every n ∈ℕ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2016-02, Vol.36 (1), p.71-89
Hauptverfasser: Pontiveros, Gonzalo Fiz, Griffiths, Simon, Morris, Robert, Saxton, David, Skokan, Jozef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Ramsey number r ( K 3 , Q n ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K N contains either a red n -dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erdős conjectured that r ( K 3 , Q n )=2 n +1 −1 for every n ∈ℕ, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r ( K 3 , Q n )⩽7000·2 n . Here we show that r ( K 3 , Q n )=(1+ o (1))2 n +1 as n →∞.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-015-3089-8