On the Ramsey number of the triangle and the cube
The Ramsey number r ( K 3 , Q n ) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K N contains either a red n -dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erdős conjectured that r ( K 3 , Q n )=2 n +1 −1 for every n ∈ℕ,...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2016-02, Vol.36 (1), p.71-89 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Ramsey number
r
(
K
3
,
Q
n
) is the smallest integer
N
such that every red-blue colouring of the edges of the complete graph
K
N
contains either a red
n
-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erdős conjectured that
r
(
K
3
,
Q
n
)=2
n
+1
−1 for every
n
∈ℕ, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that
r
(
K
3
,
Q
n
)⩽7000·2
n
. Here we show that
r
(
K
3
,
Q
n
)=(1+
o
(1))2
n
+1
as
n
→∞. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-015-3089-8 |