Shorter tours by nicer ears: 7/5-Approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs

We prove new results for approximating the graph-TSP and some related problems. We obtain polynomial-time algorithms with improved approximation guarantees. For the graph-TSP itself, we improve the approximation ratio to 7=5. For a generalization, the minimum T -tour problem, we obtain the first non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2014-10, Vol.34 (5), p.597-629
Hauptverfasser: Sebő, András, Vygen, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove new results for approximating the graph-TSP and some related problems. We obtain polynomial-time algorithms with improved approximation guarantees. For the graph-TSP itself, we improve the approximation ratio to 7=5. For a generalization, the minimum T -tour problem, we obtain the first nontrivial approximation algorithm, with ratio 3=2. This contains the s - t -path graph-TSP as a special case. Our approximation guarantee for finding a smallest 2-edge-connected spanning subgraph is 4=3. The key new ingredient of all our algorithms is a special kind of ear-decomposition optimized using forest representations of hypergraphs. The same methods also provide the lower bounds (arising from LP relaxations) that we use to deduce the approximation ratios.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-014-2960-3