The Szemerédi-Trotter theorem in the complex plane
It is shown that n points and e lines in the complex Euclidean plane ℂ 2 determine O ( n 2/3 e 2/3 + n + e ) point-line incidences. This bound is the best possible, and it generalizes the celebrated theorem by Szemerédi and Trotter about point-line incidences in the real Euclidean plane ℝ 2 .
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2015-02, Vol.35 (1), p.95-126 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that
n
points and
e
lines in the complex Euclidean plane ℂ
2
determine
O
(
n
2/3
e
2/3
+
n
+
e
) point-line incidences. This bound is the best possible, and it generalizes the celebrated theorem by Szemerédi and Trotter about point-line incidences in the real Euclidean plane ℝ
2
. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-014-2686-2 |