A Central Limit Theorem for Random Disc-Polygons in Smooth Convex Discs
In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is $$C^2_+$$ C + 2 . We use Stein’s method and the asymptotic lower bound for the variance of the area proved by Fodor, Grünfelder and Vígh (Doc Math 27: 101...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is $$C^2_+$$ C + 2 . We use Stein’s method and the asymptotic lower bound for the variance of the area proved by Fodor, Grünfelder and Vígh (Doc Math 27: 1015-1029, 2022). |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-024-00701-6 |