On Compact Packings of Euclidean Space with Spheres of Finitely Many Sizes

For $$d\in {\mathbb {N}}$$ d ∈ N , a compact sphere packing of Euclidean space $${\mathbb {R}}^{d}$$ R d is a set of spheres in $${\mathbb {R}}^{d}$$ R d with disjoint interiors so that the contact hypergraph of the packing is the vertex scheme of a homogeneous simplicial d -complex that covers all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2024-02
Hauptverfasser: Messerschmidt, Miek, Kikianty, Eder
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For $$d\in {\mathbb {N}}$$ d ∈ N , a compact sphere packing of Euclidean space $${\mathbb {R}}^{d}$$ R d is a set of spheres in $${\mathbb {R}}^{d}$$ R d with disjoint interiors so that the contact hypergraph of the packing is the vertex scheme of a homogeneous simplicial d -complex that covers all of $${\mathbb {R}}^{d}$$ R d . We are motivated by the question: For $$d,n\in {\mathbb {N}}$$ d , n ∈ N with $$d,n\ge 2$$ d , n ≥ 2 , how many configurations of numbers $$0
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-024-00628-y