On Compact Packings of Euclidean Space with Spheres of Finitely Many Sizes
For $$d\in {\mathbb {N}}$$ d ∈ N , a compact sphere packing of Euclidean space $${\mathbb {R}}^{d}$$ R d is a set of spheres in $${\mathbb {R}}^{d}$$ R d with disjoint interiors so that the contact hypergraph of the packing is the vertex scheme of a homogeneous simplicial d -complex that covers all...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For
$$d\in {\mathbb {N}}$$
d
∈
N
, a compact sphere packing of Euclidean space
$${\mathbb {R}}^{d}$$
R
d
is a set of spheres in
$${\mathbb {R}}^{d}$$
R
d
with disjoint interiors so that the contact hypergraph of the packing is the vertex scheme of a homogeneous simplicial
d
-complex that covers all of
$${\mathbb {R}}^{d}$$
R
d
. We are motivated by the question: For
$$d,n\in {\mathbb {N}}$$
d
,
n
∈
N
with
$$d,n\ge 2$$
d
,
n
≥
2
, how many configurations of numbers
$$0 |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-024-00628-y |