Adaptive Drift Analysis

We show that, for any c >0, the (1+1) evolutionary algorithm using an arbitrary mutation rate p n = c / n finds the optimum of a linear objective function over bit strings of length  n in expected time Θ( n log n ). Previously, this was only known for c ≤1. Since previous work also shows that uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2013, Vol.65 (1), p.224-250
Hauptverfasser: Doerr, Benjamin, Goldberg, Leslie Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that, for any c >0, the (1+1) evolutionary algorithm using an arbitrary mutation rate p n = c / n finds the optimum of a linear objective function over bit strings of length  n in expected time Θ( n log n ). Previously, this was only known for c ≤1. Since previous work also shows that universal drift functions cannot exist for c larger than a certain constant, we instead define drift functions which depend crucially on the relevant objective functions (and also on  c itself). Using these carefully-constructed drift functions, we prove that the expected optimisation time is Θ( n log n ). By giving an alternative proof of the multiplicative drift theorem, we also show that our optimisation-time bound holds with high probability.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-011-9585-3