Gas-liquid mass transfer in bioreactor with three-phase inverse fluidized bed

In the present study the oxygen mass transfer from the gas to the aqueous phase in a Three-Phase Inverse Fluidized Bed (TPIFB) has been studied. A pilot scale TPIFB has been designed and constructed. For determination of the volumetric oxygen mass transfer coefficient the elegant dynamic method, des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2000-11, Vol.23 (5), p.427-429
Hauptverfasser: NIKOLOV, V, FARAG, I, NIKOV, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study the oxygen mass transfer from the gas to the aqueous phase in a Three-Phase Inverse Fluidized Bed (TPIFB) has been studied. A pilot scale TPIFB has been designed and constructed. For determination of the volumetric oxygen mass transfer coefficient the elegant dynamic method, described by Dang et al. (1977) was used. The influence of hydrodynamic parameters, e.g., superficial velocities of the gas and liquid phases on the mass transfer rate was studied. In the range of variables covered, it was found that the superficial liquid velocity had a weak effect on the mass transfer whereas the gas flowrate affects the mass transfer positively. The results for the volumetric oxygen transfer coefficient in the TPIFB were compared to reported values of that coefficient, measured in a classic three-phase fluidised bed under similar hydrodynamic conditions and solid phase properties. The comparison demonstrated a two-fold increase of the oxygen transfer rate in the inverse bed over that in the classic one.
ISSN:0178-515X
1615-7591
1432-0797
DOI:10.1007/s004499900124