The implications of hippocampal neurogenesis in adolescent rats after status epilepticus: a novel role of notch signaling pathway in regulating epileptogenesis

Seizure-induced neurogenesis has a widely recognized pro-epileptogenic function. Given the critical role of Notch signaling during the maintenance and neurogenesis of neural stem cells, we hypothesized that Notch may affect epileptogenesis and its progression through its role in neurogenesis in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2020-06, Vol.380 (3), p.425-433
Hauptverfasser: Yuan, Ping, Han, Wei, Xie, Lingling, Cheng, Li, Chen, Hengsheng, Chen, Jin, Jiang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seizure-induced neurogenesis has a widely recognized pro-epileptogenic function. Given the critical role of Notch signaling during the maintenance and neurogenesis of neural stem cells, we hypothesized that Notch may affect epileptogenesis and its progression through its role in neurogenesis in the adolescent rat brain. We used the lithium-pilocarpine-induced epilepsy model in adolescent Sprague–Dawley rats in order to evaluate hippocampal neurogenesis and epileptogenesis following the onset of status epilepticus (SE). We used western blotting analyses and qPCR to measure levels of Notch signaling at different phases after seizures and immunofluorescence to detect the proliferation and differentiation of neural stem cells after seizure. Following the administration of DAPT, a Notch γ-secretase inhibitor, into the lateral ventricles, we observed a suppression of abnormal neurogenesis in the acute phase and a reduction of gliosis in the chronic phase after SE. Accordingly, the frequency and duration of spontaneous seizures in chronic phase were decreased. Our results clarify the basic concept regarding the involvement of Notch signaling in the regulation of hippocampal neurogenesis and epileptogenesis, thereby potentially offering a novel and alternative treatment for epilepsy.
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-019-03146-z