The creep behavior of simple structures with a stress range-dependent constitutive model

High temperature design remains an issue for many components in a variety of industries. Although finite element analysis for creep is now an accessible tool, most analyses outside the research domain use long standing and very simple constitutive models—in particular based on a power law representa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2012-04, Vol.82 (4), p.495-514
1. Verfasser: Boyle, James T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High temperature design remains an issue for many components in a variety of industries. Although finite element analysis for creep is now an accessible tool, most analyses outside the research domain use long standing and very simple constitutive models—in particular based on a power law representation. However, for many years, it has been known that a range of materials exhibit different behaviors at low and moderate stress levels. Recently, studies of the behavior of high temperature structures with such a stress range-dependent constitutive model have begun to emerge. The aim of this paper is to examine further the detailed behavior of simple structures with a modified power law constitutive model in order to instigate a deeper understanding of such a constitutive model’s effect on stress and deformation and the implications for high temperature design. The structures examined are elementary—a beam in bending and a pressurized thick cylinder—but have long been used to demonstrate the basic characteristics of nonlinear creep.
ISSN:0939-1533
1432-0681
DOI:10.1007/s00419-011-0569-1